Skip to main content

ClickHouse

There are 2 sources that provide integration with ClickHouse

Source ModuleDocumentation

clickhouse

This plugin extracts the following:

  • Metadata for tables, views, materialized views and dictionaries
  • Column types associated with each table(except *AggregateFunction and DateTime with timezone)
  • Table, row, and column statistics via optional SQL profiling.
  • Table, view, materialized view and dictionary(with CLICKHOUSE source_type) lineage
tip

You can also get fine-grained usage statistics for ClickHouse using the clickhouse-usage source described below.

Read more...

clickhouse-usage

This plugin has the below functionalities -

  1. For a specific dataset this plugin ingests the following statistics -
    1. top n queries.
    2. top users.
    3. usage of each column in the dataset.
  2. Aggregation of these statistics into buckets, by day or hour granularity.

Usage information is computed by querying the system.query_log table. In case you have a cluster or need to apply additional transformation/filters you can create a view and put to the query_log_table setting.

note

This source only does usage statistics. To get the tables, views, and schemas in your ClickHouse warehouse, ingest using the clickhouse source described above.

Read more...

Module clickhouse

Certified

Important Capabilities

CapabilityStatusNotes
Data ProfilingOptionally enabled via configuration
Detect Deleted EntitiesEnabled via stateful ingestion

This plugin extracts the following:

  • Metadata for tables, views, materialized views and dictionaries
  • Column types associated with each table(except *AggregateFunction and DateTime with timezone)
  • Table, row, and column statistics via optional SQL profiling.
  • Table, view, materialized view and dictionary(with CLICKHOUSE source_type) lineage
tip

You can also get fine-grained usage statistics for ClickHouse using the clickhouse-usage source described below.

CLI based Ingestion

Install the Plugin

pip install 'acryl-datahub[clickhouse]'

Starter Recipe

Check out the following recipe to get started with ingestion! See below for full configuration options.

For general pointers on writing and running a recipe, see our main recipe guide.

source:
type: clickhouse
config:
# Coordinates
host_port: localhost:9000

# Credentials
username: user
password: pass

# Options
platform_instance: DatabaseNameToBeIngested

include_views: True # whether to include views, defaults to True
include_tables: True # whether to include views, defaults to True

sink:
# sink configs

#---------------------------------------------------------------------------
# For the HTTP interface:
#---------------------------------------------------------------------------
source:
type: clickhouse
config:
host_port: localhost:8443
protocol: https

#---------------------------------------------------------------------------
# For the Native interface:
#---------------------------------------------------------------------------

source:
type: clickhouse
config:
host_port: localhost:9440
scheme: clickhouse+native
secure: True

Config Details

Note that a . is used to denote nested fields in the YAML recipe.

View All Configuration Options
FieldRequiredTypeDescriptionDefault
envstringThe environment that all assets produced by this connector belong toPROD
platform_instance_mapDict[str,string]A holder for platform -> platform_instance mappings to generate correct dataset urns
bucket_durationenum(BucketDuration)Size of the time window to aggregate usage stats.. Allowed symbols are DAY, HOURDAY
end_timestringLatest date of usage to consider. Default: Current time in UTCNone
start_timestringEarliest date of usage to consider. Default: Last full day in UTC (or hour, depending on bucket_duration)None
platform_instancestringThe instance of the platform that all assets produced by this recipe belong toNone
optionsDictAny options specified here will be passed to SQLAlchemy's create_engine as kwargs. See https://docs.sqlalchemy.org/en/14/core/engines.html#sqlalchemy.create_engine for details.
include_viewsbooleanWhether views should be ingested.True
include_tablesbooleanWhether tables should be ingested.True
include_table_location_lineagebooleanIf the source supports it, include table lineage to the underlying storage location.True
usernamestringusernameNone
passwordstringpassword
host_portstringClickHouse host URL.localhost:8123
databasestringdatabase (catalog)None
database_aliasstringAlias to apply to database when ingesting.None
sqlalchemy_uristringURI of database to connect to. See https://docs.sqlalchemy.org/en/14/core/engines.html#database-urls. Takes precedence over other connection parameters.None
securebooleanNone
protocolstringNone
include_table_lineagebooleanWhether table lineage should be ingested.True
include_materialized_viewsbooleanTrue
stateful_ingestionStatefulStaleMetadataRemovalConfig (see below for fields)
stateful_ingestion.enabledbooleanThe type of the ingestion state provider registered with datahub.False
stateful_ingestion.ignore_old_statebooleanIf set to True, ignores the previous checkpoint state.False
stateful_ingestion.ignore_new_statebooleanIf set to True, ignores the current checkpoint state.False
stateful_ingestion.remove_stale_metadatabooleanSoft-deletes the entities present in the last successful run but missing in the current run with stateful_ingestion enabled.True
schema_patternAllowDenyPattern (see below for fields)Regex patterns for schemas to filter in ingestion. Specify regex to only match the schema name. e.g. to match all tables in schema analytics, use the regex 'analytics'{'allow': ['.*'], 'deny': [], 'ignoreCase': True}
schema_pattern.allowArray of stringList of regex patterns to include in ingestion['.*']
schema_pattern.denyArray of stringList of regex patterns to exclude from ingestion.[]
schema_pattern.ignoreCasebooleanWhether to ignore case sensitivity during pattern matching.True
table_patternAllowDenyPattern (see below for fields)Regex patterns for tables to filter in ingestion. Specify regex to match the entire table name in database.schema.table format. e.g. to match all tables starting with customer in Customer database and public schema, use the regex 'Customer.public.customer.*'{'allow': ['.*'], 'deny': [], 'ignoreCase': True}
table_pattern.allowArray of stringList of regex patterns to include in ingestion['.*']
table_pattern.denyArray of stringList of regex patterns to exclude from ingestion.[]
table_pattern.ignoreCasebooleanWhether to ignore case sensitivity during pattern matching.True
view_patternAllowDenyPattern (see below for fields)Regex patterns for views to filter in ingestion. Note: Defaults to table_pattern if not specified. Specify regex to match the entire view name in database.schema.view format. e.g. to match all views starting with customer in Customer database and public schema, use the regex 'Customer.public.customer.*'{'allow': ['.*'], 'deny': [], 'ignoreCase': True}
view_pattern.allowArray of stringList of regex patterns to include in ingestion['.*']
view_pattern.denyArray of stringList of regex patterns to exclude from ingestion.[]
view_pattern.ignoreCasebooleanWhether to ignore case sensitivity during pattern matching.True
profile_patternAllowDenyPattern (see below for fields)Regex patterns to filter tables (or specific columns) for profiling during ingestion. Note that only tables allowed by the table_pattern will be considered.{'allow': ['.*'], 'deny': [], 'ignoreCase': True}
profile_pattern.allowArray of stringList of regex patterns to include in ingestion['.*']
profile_pattern.denyArray of stringList of regex patterns to exclude from ingestion.[]
profile_pattern.ignoreCasebooleanWhether to ignore case sensitivity during pattern matching.True
domainDict[str, AllowDenyPattern]Attach domains to databases, schemas or tables during ingestion using regex patterns. Domain key can be a guid like urn:li:domain:ec428203-ce86-4db3-985d-5a8ee6df32ba or a string like "Marketing".) If you provide strings, then datahub will attempt to resolve this name to a guid, and will error out if this fails. There can be multiple domain keys specified.{}
domain.key.allowArray of stringList of regex patterns to include in ingestion['.*']
domain.key.denyArray of stringList of regex patterns to exclude from ingestion.[]
domain.key.ignoreCasebooleanWhether to ignore case sensitivity during pattern matching.True
profilingGEProfilingConfig (see below for fields){'enabled': False, 'limit': None, 'offset': None, 'report_dropped_profiles': False, 'turn_off_expensive_profiling_metrics': False, 'profile_table_level_only': False, 'include_field_null_count': True, 'include_field_distinct_count': True, 'include_field_min_value': True, 'include_field_max_value': True, 'include_field_mean_value': True, 'include_field_median_value': True, 'include_field_stddev_value': True, 'include_field_quantiles': False, 'include_field_distinct_value_frequencies': False, 'include_field_histogram': False, 'include_field_sample_values': True, 'field_sample_values_limit': 20, 'max_number_of_fields_to_profile': None, 'profile_if_updated_since_days': None, 'profile_table_size_limit': 5, 'profile_table_row_limit': 5000000, 'profile_table_row_count_estimate_only': False, 'max_workers': 10, 'query_combiner_enabled': True, 'catch_exceptions': True, 'partition_profiling_enabled': True, 'partition_datetime': None}
profiling.enabledbooleanWhether profiling should be done.False
profiling.limitintegerMax number of documents to profile. By default, profiles all documents.None
profiling.offsetintegerOffset in documents to profile. By default, uses no offset.None
profiling.report_dropped_profilesbooleanWhether to report datasets or dataset columns which were not profiled. Set to True for debugging purposes.False
profiling.turn_off_expensive_profiling_metricsbooleanWhether to turn off expensive profiling or not. This turns off profiling for quantiles, distinct_value_frequencies, histogram & sample_values. This also limits maximum number of fields being profiled to 10.False
profiling.profile_table_level_onlybooleanWhether to perform profiling at table-level only, or include column-level profiling as well.False
profiling.include_field_null_countbooleanWhether to profile for the number of nulls for each column.True
profiling.include_field_distinct_countbooleanWhether to profile for the number of distinct values for each column.True
profiling.include_field_min_valuebooleanWhether to profile for the min value of numeric columns.True
profiling.include_field_max_valuebooleanWhether to profile for the max value of numeric columns.True
profiling.include_field_mean_valuebooleanWhether to profile for the mean value of numeric columns.True
profiling.include_field_median_valuebooleanWhether to profile for the median value of numeric columns.True
profiling.include_field_stddev_valuebooleanWhether to profile for the standard deviation of numeric columns.True
profiling.include_field_quantilesbooleanWhether to profile for the quantiles of numeric columns.False
profiling.include_field_distinct_value_frequenciesbooleanWhether to profile for distinct value frequencies.False
profiling.include_field_histogrambooleanWhether to profile for the histogram for numeric fields.False
profiling.include_field_sample_valuesbooleanWhether to profile for the sample values for all columns.True
profiling.field_sample_values_limitintegerUpper limit for number of sample values to collect for all columns.20
profiling.max_number_of_fields_to_profileintegerA positive integer that specifies the maximum number of columns to profile for any table. None implies all columns. The cost of profiling goes up significantly as the number of columns to profile goes up.None
profiling.profile_if_updated_since_daysnumberProfile table only if it has been updated since these many number of days. If set to null, no constraint of last modified time for tables to profile. Supported only in snowflake and BigQuery.None
profiling.profile_table_size_limitintegerProfile tables only if their size is less then specified GBs. If set to null, no limit on the size of tables to profile. Supported only in snowflake and BigQuery5
profiling.profile_table_row_limitintegerProfile tables only if their row count is less then specified count. If set to null, no limit on the row count of tables to profile. Supported only in snowflake and BigQuery5000000
profiling.profile_table_row_count_estimate_onlybooleanUse an approximate query for row count. This will be much faster but slightly less accurate. Only supported for Postgres.False
profiling.max_workersintegerNumber of worker threads to use for profiling. Set to 1 to disable.10
profiling.query_combiner_enabledbooleanThis feature is still experimental and can be disabled if it causes issues. Reduces the total number of queries issued and speeds up profiling by dynamically combining SQL queries where possible.True
profiling.catch_exceptionsbooleanTrue
profiling.partition_profiling_enabledbooleanTrue
profiling.partition_datetimestringFor partitioned datasets profile only the partition which matches the datetime or profile the latest one if not set. Only Bigquery supports this.None

Code Coordinates

  • Class Name: datahub.ingestion.source.sql.clickhouse.ClickHouseSource
  • Browse on GitHub

Module clickhouse-usage

Certified

Important Capabilities

CapabilityStatusNotes
Data ProfilingOptionally enabled via configuration
Detect Deleted EntitiesEnabled via stateful ingestion

This plugin has the below functionalities -

  1. For a specific dataset this plugin ingests the following statistics -
    1. top n queries.
    2. top users.
    3. usage of each column in the dataset.
  2. Aggregation of these statistics into buckets, by day or hour granularity.

Usage information is computed by querying the system.query_log table. In case you have a cluster or need to apply additional transformation/filters you can create a view and put to the query_log_table setting.

note

This source only does usage statistics. To get the tables, views, and schemas in your ClickHouse warehouse, ingest using the clickhouse source described above.

CLI based Ingestion

Install the Plugin

pip install 'acryl-datahub[clickhouse-usage]'

Starter Recipe

Check out the following recipe to get started with ingestion! See below for full configuration options.

For general pointers on writing and running a recipe, see our main recipe guide.

source:
type: clickhouse-usage
config:
# Coordinates
host_port: db_host:port
platform_instance: dev_cluster
email_domain: acryl.io

# Credentials
username: username
password: "password"

sink:
# sink configs

Config Details

Note that a . is used to denote nested fields in the YAML recipe.

View All Configuration Options
FieldRequiredTypeDescriptionDefault
envstringThe environment that all assets produced by this connector belong toPROD
bucket_durationenum(BucketDuration)Size of the time window to aggregate usage stats.. Allowed symbols are DAY, HOURDAY
end_timestringLatest date of usage to consider. Default: Current time in UTCNone
start_timestringEarliest date of usage to consider. Default: Last full day in UTC (or hour, depending on bucket_duration)None
top_n_queriesintegerNumber of top queries to save to each table.10
include_operational_statsbooleanWhether to display operational stats.True
include_read_operational_statsbooleanWhether to report read operational stats. Experimental.False
format_sql_queriesbooleanWhether to format sql queriesFalse
include_top_n_queriesbooleanWhether to ingest the top_n_queries.True
platform_instance_mapDict[str,string]A holder for platform -> platform_instance mappings to generate correct dataset urns
platform_instancestringThe instance of the platform that all assets produced by this recipe belong toNone
optionsDict{}
include_viewsbooleanWhether views should be ingested.True
include_tablesbooleanWhether tables should be ingested.True
include_table_location_lineagebooleanIf the source supports it, include table lineage to the underlying storage location.True
usernamestringusernameNone
passwordstringpassword
host_portstringClickHouse host URL.localhost:8123
databasestringdatabase (catalog)None
database_aliasstringAlias to apply to database when ingesting.None
sqlalchemy_uristringURI of database to connect to. See https://docs.sqlalchemy.org/en/14/core/engines.html#database-urls. Takes precedence over other connection parameters.None
securebooleanNone
protocolstringNone
include_table_lineagebooleanWhether table lineage should be ingested.True
include_materialized_viewsbooleanTrue
email_domainstringNone
query_log_tablestringsystem.query_log
user_email_patternAllowDenyPattern (see below for fields)regex patterns for user emails to filter in usage.{'allow': ['.*'], 'deny': [], 'ignoreCase': True}
user_email_pattern.allowArray of stringList of regex patterns to include in ingestion['.*']
user_email_pattern.denyArray of stringList of regex patterns to exclude from ingestion.[]
user_email_pattern.ignoreCasebooleanWhether to ignore case sensitivity during pattern matching.True
stateful_ingestionStatefulStaleMetadataRemovalConfig (see below for fields)
stateful_ingestion.enabledbooleanThe type of the ingestion state provider registered with datahub.False
stateful_ingestion.ignore_old_statebooleanIf set to True, ignores the previous checkpoint state.False
stateful_ingestion.ignore_new_statebooleanIf set to True, ignores the current checkpoint state.False
stateful_ingestion.remove_stale_metadatabooleanSoft-deletes the entities present in the last successful run but missing in the current run with stateful_ingestion enabled.True
schema_patternAllowDenyPattern (see below for fields)Regex patterns for schemas to filter in ingestion. Specify regex to only match the schema name. e.g. to match all tables in schema analytics, use the regex 'analytics'{'allow': ['.*'], 'deny': [], 'ignoreCase': True}
schema_pattern.allowArray of stringList of regex patterns to include in ingestion['.*']
schema_pattern.denyArray of stringList of regex patterns to exclude from ingestion.[]
schema_pattern.ignoreCasebooleanWhether to ignore case sensitivity during pattern matching.True
table_patternAllowDenyPattern (see below for fields)Regex patterns for tables to filter in ingestion. Specify regex to match the entire table name in database.schema.table format. e.g. to match all tables starting with customer in Customer database and public schema, use the regex 'Customer.public.customer.*'{'allow': ['.*'], 'deny': [], 'ignoreCase': True}
table_pattern.allowArray of stringList of regex patterns to include in ingestion['.*']
table_pattern.denyArray of stringList of regex patterns to exclude from ingestion.[]
table_pattern.ignoreCasebooleanWhether to ignore case sensitivity during pattern matching.True
view_patternAllowDenyPattern (see below for fields)Regex patterns for views to filter in ingestion. Note: Defaults to table_pattern if not specified. Specify regex to match the entire view name in database.schema.view format. e.g. to match all views starting with customer in Customer database and public schema, use the regex 'Customer.public.customer.*'{'allow': ['.*'], 'deny': [], 'ignoreCase': True}
view_pattern.allowArray of stringList of regex patterns to include in ingestion['.*']
view_pattern.denyArray of stringList of regex patterns to exclude from ingestion.[]
view_pattern.ignoreCasebooleanWhether to ignore case sensitivity during pattern matching.True
profile_patternAllowDenyPattern (see below for fields)Regex patterns to filter tables (or specific columns) for profiling during ingestion. Note that only tables allowed by the table_pattern will be considered.{'allow': ['.*'], 'deny': [], 'ignoreCase': True}
profile_pattern.allowArray of stringList of regex patterns to include in ingestion['.*']
profile_pattern.denyArray of stringList of regex patterns to exclude from ingestion.[]
profile_pattern.ignoreCasebooleanWhether to ignore case sensitivity during pattern matching.True
domainDict[str, AllowDenyPattern]Attach domains to databases, schemas or tables during ingestion using regex patterns. Domain key can be a guid like urn:li:domain:ec428203-ce86-4db3-985d-5a8ee6df32ba or a string like "Marketing".) If you provide strings, then datahub will attempt to resolve this name to a guid, and will error out if this fails. There can be multiple domain keys specified.{}
domain.key.allowArray of stringList of regex patterns to include in ingestion['.*']
domain.key.denyArray of stringList of regex patterns to exclude from ingestion.[]
domain.key.ignoreCasebooleanWhether to ignore case sensitivity during pattern matching.True
profilingGEProfilingConfig (see below for fields){'enabled': False, 'limit': None, 'offset': None, 'report_dropped_profiles': False, 'turn_off_expensive_profiling_metrics': False, 'profile_table_level_only': False, 'include_field_null_count': True, 'include_field_distinct_count': True, 'include_field_min_value': True, 'include_field_max_value': True, 'include_field_mean_value': True, 'include_field_median_value': True, 'include_field_stddev_value': True, 'include_field_quantiles': False, 'include_field_distinct_value_frequencies': False, 'include_field_histogram': False, 'include_field_sample_values': True, 'field_sample_values_limit': 20, 'max_number_of_fields_to_profile': None, 'profile_if_updated_since_days': None, 'profile_table_size_limit': 5, 'profile_table_row_limit': 5000000, 'profile_table_row_count_estimate_only': False, 'max_workers': 10, 'query_combiner_enabled': True, 'catch_exceptions': True, 'partition_profiling_enabled': True, 'partition_datetime': None}
profiling.enabledbooleanWhether profiling should be done.False
profiling.limitintegerMax number of documents to profile. By default, profiles all documents.None
profiling.offsetintegerOffset in documents to profile. By default, uses no offset.None
profiling.report_dropped_profilesbooleanWhether to report datasets or dataset columns which were not profiled. Set to True for debugging purposes.False
profiling.turn_off_expensive_profiling_metricsbooleanWhether to turn off expensive profiling or not. This turns off profiling for quantiles, distinct_value_frequencies, histogram & sample_values. This also limits maximum number of fields being profiled to 10.False
profiling.profile_table_level_onlybooleanWhether to perform profiling at table-level only, or include column-level profiling as well.False
profiling.include_field_null_countbooleanWhether to profile for the number of nulls for each column.True
profiling.include_field_distinct_countbooleanWhether to profile for the number of distinct values for each column.True
profiling.include_field_min_valuebooleanWhether to profile for the min value of numeric columns.True
profiling.include_field_max_valuebooleanWhether to profile for the max value of numeric columns.True
profiling.include_field_mean_valuebooleanWhether to profile for the mean value of numeric columns.True
profiling.include_field_median_valuebooleanWhether to profile for the median value of numeric columns.True
profiling.include_field_stddev_valuebooleanWhether to profile for the standard deviation of numeric columns.True
profiling.include_field_quantilesbooleanWhether to profile for the quantiles of numeric columns.False
profiling.include_field_distinct_value_frequenciesbooleanWhether to profile for distinct value frequencies.False
profiling.include_field_histogrambooleanWhether to profile for the histogram for numeric fields.False
profiling.include_field_sample_valuesbooleanWhether to profile for the sample values for all columns.True
profiling.field_sample_values_limitintegerUpper limit for number of sample values to collect for all columns.20
profiling.max_number_of_fields_to_profileintegerA positive integer that specifies the maximum number of columns to profile for any table. None implies all columns. The cost of profiling goes up significantly as the number of columns to profile goes up.None
profiling.profile_if_updated_since_daysnumberProfile table only if it has been updated since these many number of days. If set to null, no constraint of last modified time for tables to profile. Supported only in snowflake and BigQuery.None
profiling.profile_table_size_limitintegerProfile tables only if their size is less then specified GBs. If set to null, no limit on the size of tables to profile. Supported only in snowflake and BigQuery5
profiling.profile_table_row_limitintegerProfile tables only if their row count is less then specified count. If set to null, no limit on the row count of tables to profile. Supported only in snowflake and BigQuery5000000
profiling.profile_table_row_count_estimate_onlybooleanUse an approximate query for row count. This will be much faster but slightly less accurate. Only supported for Postgres.False
profiling.max_workersintegerNumber of worker threads to use for profiling. Set to 1 to disable.10
profiling.query_combiner_enabledbooleanThis feature is still experimental and can be disabled if it causes issues. Reduces the total number of queries issued and speeds up profiling by dynamically combining SQL queries where possible.True
profiling.catch_exceptionsbooleanTrue
profiling.partition_profiling_enabledbooleanTrue
profiling.partition_datetimestringFor partitioned datasets profile only the partition which matches the datetime or profile the latest one if not set. Only Bigquery supports this.None

Code Coordinates

  • Class Name: datahub.ingestion.source.usage.clickhouse_usage.ClickHouseUsageSource
  • Browse on GitHub

Questions

If you've got any questions on configuring ingestion for ClickHouse, feel free to ping us on our Slack